3.8.78 \(\int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\) [778]

3.8.78.1 Optimal result
3.8.78.2 Mathematica [A] (verified)
3.8.78.3 Rubi [A] (verified)
3.8.78.4 Maple [B] (verified)
3.8.78.5 Fricas [B] (verification not implemented)
3.8.78.6 Sympy [F]
3.8.78.7 Maxima [F(-2)]
3.8.78.8 Giac [F]
3.8.78.9 Mupad [F(-1)]

3.8.78.1 Optimal result

Integrand size = 28, antiderivative size = 147 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\left (\frac {1}{4}-\frac {i}{4}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{3/2} d}+\frac {i}{3 d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac {1}{2 a d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

output
(-1/4+1/4*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(3/2)/d+1/2/a/d/cot(d*x+c)^(1/2)/( 
a+I*a*tan(d*x+c))^(1/2)+1/3*I/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2)
 
3.8.78.2 Mathematica [A] (verified)

Time = 1.80 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.84 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {-\frac {3 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {i a \tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {i a \tan (c+d x)}}+\frac {10 i+6 \cot (c+d x)}{(i+\cot (c+d x)) \sqrt {a+i a \tan (c+d x)}}}{12 a d \sqrt {\cot (c+d x)}} \]

input
Integrate[1/(Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)),x]
 
output
((-3*Sqrt[2]*ArcTanh[(Sqrt[2]*Sqrt[I*a*Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + 
 d*x]]])/Sqrt[I*a*Tan[c + d*x]] + (10*I + 6*Cot[c + d*x])/((I + Cot[c + d* 
x])*Sqrt[a + I*a*Tan[c + d*x]]))/(12*a*d*Sqrt[Cot[c + d*x]])
 
3.8.78.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.05, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.321, Rules used = {3042, 4729, 3042, 4029, 3042, 4029, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (c+d x)^{3/2} (a+i a \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan (c+d x)^{3/2}}{(i \tan (c+d x) a+a)^{3/2}}dx\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {a \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )}{2 a}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}\right )}{2 a}\right )\)

input
Int[1/(Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(3/2)),x]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((I/3)*Tan[c + d*x]^(3/2))/(d*(a + 
I*a*Tan[c + d*x])^(3/2)) - ((I/2)*(((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]* 
Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[Tan 
[c + d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])))/a)
 

3.8.78.3.1 Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.8.78.4 Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 473 vs. \(2 (115 ) = 230\).

Time = 2.04 (sec) , antiderivative size = 474, normalized size of antiderivative = 3.22

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \left (\tan ^{3}\left (d x +c \right )\right )-9 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )-20 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+9 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a -32 \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{24 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{3}}\) \(474\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (3 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \left (\tan ^{3}\left (d x +c \right )\right )-9 i \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \tan \left (d x +c \right )-20 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (\tan ^{2}\left (d x +c \right )\right )+9 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a \left (\tan ^{2}\left (d x +c \right )\right )+12 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-3 \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 \tan \left (d x +c \right ) a}{\tan \left (d x +c \right )+i}\right ) \sqrt {2}\, a -32 \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{24 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) a^{2} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{3}}\) \(474\)

input
int(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/24/d/(1/tan(d*x+c))^(3/2)/tan(d*x+c)*(a*(1+I*tan(d*x+c)))^(1/2)/a^2*(3* 
I*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3 
*tan(d*x+c)*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^3-9*I*ln(-(-2*2^(1/2)* 
(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(ta 
n(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)-20*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)*tan(d*x+c)^2+9*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)* 
(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+c)*a)/(tan(d*x+c)+I))*2^(1/2)*a*tan( 
d*x+c)^2+12*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)-3*ln(-(-2 
*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*tan(d*x+ 
c)*a)/(tan(d*x+c)+I))*2^(1/2)*a-32*(-I*a)^(1/2)*tan(d*x+c)*(a*tan(d*x+c)*( 
1+I*tan(d*x+c)))^(1/2))/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2) 
/(-tan(d*x+c)+I)^3
 
3.8.78.5 Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 356 vs. \(2 (107) = 214\).

Time = 0.25 (sec) , antiderivative size = 356, normalized size of antiderivative = 2.42 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\frac {{\left (3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} {\left (i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 3 \, a^{2} d \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} {\left (-i \, a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{2 \, a^{3} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (-4 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 5 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - i\right )}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

input
integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas 
")
 
output
1/12*(3*a^2*d*sqrt(-1/2*I/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*( 
I*a^2*d*e^(2*I*d*x + 2*I*c) - I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*s 
qrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/2*I/(a^ 
3*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 3*a^2*d*sqrt(-1/2*I/(a^ 
3*d^2))*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*(-I*a^2*d*e^(2*I*d*x + 2*I*c) 
+ I*a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + 
 I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/2*I/(a^3*d^2)) - I*a*e^(I*d*x + I*c 
))*e^(-I*d*x - I*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e 
^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(-4*I*e^(4*I*d*x + 4*I* 
c) + 5*I*e^(2*I*d*x + 2*I*c) - I))*e^(-3*I*d*x - 3*I*c)/(a^2*d)
 
3.8.78.6 Sympy [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate(1/cot(d*x+c)**(3/2)/(a+I*a*tan(d*x+c))**(3/2),x)
 
output
Integral(1/((I*a*(tan(c + d*x) - I))**(3/2)*cot(c + d*x)**(3/2)), x)
 
3.8.78.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

input
integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima 
")
 
output
Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 
3.8.78.8 Giac [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\int { \frac {1}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/((I*a*tan(d*x + c) + a)^(3/2)*cot(d*x + c)^(3/2)), x)
 
3.8.78.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}} \,d x \]

input
int(1/(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2)),x)
 
output
int(1/(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(3/2)), x)